815 research outputs found

    Large <i>Centrophorus</i> (Chondrichthyes, Squaliformes) of the Belgian Neogene continental shelf

    Get PDF
    A number of isolated teeth of gulper sharks (genus Centrophorus Müller & Henle, 1837) have been recovered from Neogene sands in the Antwerp area, marking the first occurrence of the genus Centrophorus in the fossil record of Belgium and the North Sea Basin. The precise stratigraphic origin of these teeth could not be established, but the taphonomic condition strongly suggests a Late Miocene or Early Pliocene age, although reworking from older Miocene strata cannot be excluded. These teeth are remarkable for the presence of serrated cutting edges of both upper and lower teeth as well as their large size. The teeth, that measure up to 1 cm, are the largest fossil Centrophorus reported in literature. The subtle differences between the teeth of different Centrophorus species and the paucity of comparative extant material prohibit specific attribution, but the teeth pertain to individuals that equalled the largest extant species. The occurrence of these large Centrophorus in the Belgian deposits is remarkable as Centrophorus usually prefers deeper waters

    Accurate Reaction-Diffusion Operator Splitting on Tetrahedral Meshes for Parallel Stochastic Molecular Simulations

    Full text link
    Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, meaning that the serial limit has already been reached in sub-cellular models. This calls for parallel simulations that can take advantage of the power of modern supercomputers; however exact methods are known to be inherently serial. We introduce an operator splitting implementation for irregular grids with a novel method to improve accuracy, and demonstrate potential for scalable parallel simulations in an initial MPI version. We foresee that this groundwork will enable larger scale, whole-cell stochastic simulations in the near future.Comment: 33 pages, 10 figure

    On the Firing Rate Dependency of the Phase Response Curve of Rat Purkinje Neurons In Vitro

    Get PDF
    Synchronous spiking during cerebellar tasks has been observed across Purkinje cells: however, little is known about the intrinsic cellular mechanisms responsible for its initiation, cessation and stability. The Phase Response Curve (PRC), a simple input-output characterization of single cells, can provide insights into individual and collective properties of neurons and networks, by quantifying the impact of an infinitesimal depolarizing current pulse on the time of occurrence of subsequent action potentials, while a neuron is firing tonically. Recently, the PRC theory applied to cerebellar Purkinje cells revealed that these behave as phase-independent integrators at low firing rates, and switch to a phase-dependent mode at high rates. Given the implications for computation and information processing in the cerebellum and the possible role of synchrony in the communication with its post-synaptic targets, we further explored the firing rate dependency of the PRC in Purkinje cells. We isolated key factors for the experimental estimation of the PRC and developed a closed-loop approach to reliably compute the PRC across diverse firing rates in the same cell. Our results show unambiguously that the PRC of individual Purkinje cells is firing rate dependent and that it smoothly transitions from phase independent integrator to a phase dependent mode. Using computational models we show that neither channel noise nor a realistic cell morphology are responsible for the rate dependent shift in the phase response curve

    Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells.

    Get PDF
    The Golgi cells have been recently shown to beat regularly in vitro (Forti et al., 2006. J. Physiol. 574, 711-729). Four main currents were shown to be involved, namely a persistent sodium current (I(Na-p)), an h current (I(h)), an SK-type calcium-dependent potassium current (I(K-AHP)), and a slow M-like potassium current (I(K-slow)). These ionic currents could take part, together with others, also to different aspects of neuronal excitability like responses to depolarizing and hyperpolarizing current injection. However, the ionic mechanisms and their interactions remained largely hypothetical. In this work, we have investigated the mechanisms of Golgi cell excitability by developing a computational model. The model predicts that pacemaking is sustained by subthreshold oscillations tightly coupled to spikes. I(Na-p) and I(K-slow) emerged as the critical determinants of oscillations. I(h) also played a role by setting the oscillatory mechanism into the appropriate membrane potential range. I(K-AHP), though taking part to the oscillation, appeared primarily involved in regulating the ISI following spikes. The combination with other currents, in particular a resurgent sodium current (I(Na-r)) and an A-current (I(K-A)), allowed a precise regulation of response frequency and delay. These results provide a coherent reconstruction of the ionic mechanisms determining Golgi cell intrinsic electroresponsiveness and suggests important implications for cerebellar signal processing, which will be fully developed in a companion paper (Solinas et al., 2008. Front. Neurosci. 2:4)

    Large Centrophorus (Chondrichthyes, Squaliformes) of the Belgian Neogene continental shelf

    Get PDF
    A number of isolated teeth of gulper sharks (genus Centrophorus Müller & Henle, 1837) have been recovered from Neogene sands in the Antwerp area, marking the first occurrence of the genus Centrophorus in the fossil record of Belgium and the North Sea Basin. The precise stratigraphic origin of these teeth could not be established, but the taphonomic condition strongly suggests a Late Miocene or Early Pliocene age, although reworking from older Miocene strata cannot be excluded. These teeth are remarkable for the presence of serrated cutting edges of both upper and lower teeth as well as their large size. The teeth, that measure up to 1 cm, are the largest fossil Centrophorus reported in literature. The subtle differences between the teeth of different Centrophorus species and the paucity of comparative extant material prohibit specific attribution, but the teeth pertain to individuals that equalled the largest extant species. The occurrence of these large Centrophorus in the Belgian deposits is remarkable as Centrophorus usually prefers deeper water
    corecore